Parametrization invariance and shape equations of elastic axisymmetric vesicles
نویسندگان
چکیده
منابع مشابه
Parametrization invariance and shape equations of elastic axisymmetric vesicles.
The issue of different parameterizations of the axisymmetric vesicle shape addressed by Hu Jian-Guo and Ou-Yang Zhong-Can [ Phys.Rev. E 47 (1993) 461 ] is reassesed, especially as it transpires through the corresponding Euler Lagrange equations of the associated elastic energy functional. It is argued that for regular, smooth contours of vesicles with spherical topology, different parameterizat...
متن کاملShape equations for axisymmetric vesicles: A clarification.
We derive the shape equations for axisymmetric vesicles and show that they are identical to the general shape equation [Ou-Yang Zhong-Can and W. Helfrich, Phys. Rev. A 39, 5280 (1989)] specialized to axisymmetry. We consider three difFerent topologies (an axisymmetric membrane segment suspended between two circular rings and closed vesicles of spherical and toroidal topology). We point out that...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSurface Parametrization and Shape Description
Procedures for the parametrization and description of the surface of simply connected 3-D objects are presented. Critical issues for shape-based categorization and comparison of 3-D objects are addressed, which are generality with respect to object complexity, invariance to standard transformations and descriptive power in terms of object geometry. Starting from segmented volume data, a relatio...
متن کاملParametrization of Cosserat Equations
As a matter of fact, the solution space of many systems of ordinary differential (OD) or partial differential (PD) equations in engineering or mathematical physics ”can/cannot” be parametrized by a certain number of arbitrary functions behaving like ”potentials”. In view of the explicit examples to be met later on, it must be noticed that the parametrizing operator, though often of the first or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1995
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.51.544